****** 2ND SECTION (PART I)

Volhard's Method

It is a type of precipitation titration that depends on the formation of colored complex ions (colored solution) at the end point.

Main features of Volhard's method:

• Sample:	<u>Cl</u> - , <u>Br</u> -, <u>I</u> - & <u>SCN</u>
Type of titration:	Back (Residual) titration.
Standard Solutions:	\Rightarrow 1 st standard (25 ml): AgNO ₃ . \Rightarrow 2 nd standard (titrant): NH ₄ SCN or KSCN.
• pH:	Acidic medium (HNO ₃).
• Indicator:	Ferric salts such as: 1) Ferric alum = Ferric ammonium Sulfate { FeNH4(SO4)2.12H2O }. OR 2) Ferric nitrate { Fe(NO3)3 }.
• Color at E.P.:	Faint orange or faint red color.

Introduction on Solubility Product (K _{sp}):
$igle$ \underline{K}_{sp} is calculated only for <u>sparingly soluble</u> salts (ex.: AgCl) and it is
constant for a certain salt at a specified temperature.
◆ Meaning of K _{sp} :
For AgCl (for example): $K_{sp} = [Ag^{\dagger}][Cl^{-}]at$ saturated soln. (or at equilibrium).
lacktriangle K _{sp} values for a certain salt can be known from reference tables.
♦ Significance of K _{sp} :
\Rightarrow For the ppt of AgCl (for example) to be formed in a solution:
$[Ag^{\dagger}][Cl^{-}]$ must be $> K_{sp}$ of $AgCl$.
\Rightarrow \uparrow Solubility product $(K_{sp}) \equiv \uparrow$ Solubility & vice versa.
\Rightarrow If different precipitates can be formed:
\downarrow K_{sp} = the salt is precipitated first (<u>i.e</u> : the salt is more insoluble or less soluble).
≡ more stable ppt.
N.B.: This rule is <u>not</u> always obeyed in case of non-symmetrical
salts (i.e. salts in which the valence of the cation radicle \neq the valence
of the anion radicle) such as Ag_2CrO_4 , PbI_2 etc.
{although K_{sp} of Ag_2CrO_4 is less than K_{sp} of $AgCl$ but Ag_2CrO_4 is more soluble than $AgCl$ $refer$ to $Mohr's$ $method$ }.

Ó

Important example:

$$K_{sp}$$
 of $AgI < AgBr < AgSCN < AgCl$

<u>So</u>:

 \Rightarrow If a mix. of I^- , Br^- , SCN^- , Cl^- (of near concentrations) is treated with Ag^+ :

+ Ag⁺

The order of precipitation will be:

- 1- AgI
- 2- AgBr
- 3- AgSCN
 - 4- AgCl

 \Rightarrow If we have:

AgCl ppt

AgSCN ppt + Cl⁻

AgBr ppt

No reaction

AgI ppt

+ SCN

No reaction

Exp.(5): Determination of NaCl by Volhard's method

Principle : {Back (Residual) titration}

It depends upon the precipitation of Cl^- as AgCl by the addition of a known excess of standard $AgNO_3$ THEN the remaining unreacted $AgNO_3$ is back titrated against standard NH₄SCN using ferric alum indicator.

NH4SCN titrant

remaining unused AgNO3

2 Titration reaction:

$$Ag^+$$
 + $SCN^ \longrightarrow$ $AgSCN \downarrow$ (remaining unused excess) (NH4SCN titrant) white ppt

3 End point reaction:

$$SCN^{-}$$
 + Fe^{3+} \longrightarrow $[Fe(SCN)]^{2+}$ (1st dr. excess after complete (indicator) faint orange reactn with the unused Ag^{+}) or faint red color

Notes:

1) Since K_{sp} of AgSCN < AgCl so AgSCN is more stable (more insoluble) than AgCl so after complete reaction between NH₄SCN titrant & the excess unused AgNO₃, the SCN⁻ ions will attack AgCl ppt and replace Cl⁻:

$$AgCl_{(solid)} + SCN^{-} \longrightarrow AgSCN_{(solid)} + Cl^{-}$$

<u>To overcome this problem</u>: The ppted AgCl must be removed or coated before titrating the excess unused Ag^+ with NH_4SCN & that can be achieved by:

- 1- Filtration of AqCl ppt before titration.
- OR 2-Coating AgCl ppt by the addition of an organic solvent as nitrobenzene or amyl alcohol which forms a water-proof layer around AgCl ppt protecting it from reaction with NH₄SCN.

Question: (Complete the following)

In the detn. of NaCl by Volhard's method, if AgCl is not removed, the observed E.P. will be <u>higher</u> than the true and the calculated Cl^- content (concn.) will be <u>lower</u> than the true... because it's a back titration.

2) Strong shaking near the E.P. is required to prevent adsorption of Ag^{+} ions on the freshly ppted AgSCN which leads to occurrence of early E.P.

Question: (Complete the following)

In the detn. of NaCl by Volhard's method, if the titration is done without vigorous shaking at the E.P., the observed E.P. will be <u>lower</u> than the true and the calculated concn. will be <u>higher</u> than the true.

- 3) The titration is performed only in acidic medium (HNO3) because:
 - a. In alkaline medium, Ag^{\dagger} & Fe³⁺ ions will be ppted as AgOH & Fe(OH)₃.
 - b. HNO_3 prevent precipitation of other Ag^+ salts like carbonate and sulfide because these salts are soluble in HNO_3 .
 - c. HNO_3 helps the coagulation of AgCl ppt & that facilitates its filtration or coating.

BUT too high concentration of HNO_3 should be avoided because that destroys the colored ferric thiocyanate complex formed at the E.P.

: (الأدوات المطلوبة) Required Glassware

- Stoppered flask. → well-closed
- · Conical flask.
- Burette & burette holder.
- 10-ml bulb pipette.
- 25-ml bulb pipette.
- 10-ml graduated pipette.
- 10-ml measuring cylinder.
- Filter papers (Whatmann no.1).
- Funnel.
- Beaker.
- Dropper.
- Calculator.

Procedure : **!!! BEFORE STARTING THE DETERMINATION,** WASH ALL THE GLASSWARE WITH DISTILLED WATER. (because tap water contains Cl-). 1 Transfer accurately 10 ml of the sample into a 100-ml measuring flask. 2 Add 2 ml conc. HNO3. 3 Add <u>25</u> ml of <u>0.05 N AgNO₃.</u> 4 Shake well for few minutes to coagulate the precipitated AgCl. 5 Complete to the mark with **distilled** water. 6 Mix well. Filter through a dry filter paper, rejecting the first few milliliters of the filtrate.

8 Transfer <u>25</u> ml of the filtrate into a clean glass <u>stoppered</u> flask.	
	Ø
	~~
9 Add <u>1</u> ml ferric alum indicator.	
	Ø
10 Titnata with 0 01 NINH SCNI with atnong chaking	
10 Titrate with <u>0.01 N NH₄SCN</u> with strong shaking.	
Color at E.P.: Faint Orange Color not disappear on strong shaki	ng.
	Ø
	,
20	

Calculations :

In this exp., the equivalence factor (F) can be calculated on 0.05 N AgNO₃ (1st standard "25 ml") OR on 0.01 N NH₄SCN (2nd standard "titrant") but it is preferred to be calculated on the 1st standard.

If (F) is calculated on the 1st standard (0.05 N AgNO₃):

Equivalence factor (F):

$$1 \text{ AgNO}_3 \equiv 1 \text{ NaCl}$$
 standard sample

each ml of 0.05 N
$$AgNO_3 = \frac{1 \times M.W. \text{ of } NaCl \times 0.05}{1 \times 1000} = \dots g \text{ NaCl}$$

Calculation of concentration:

Concn. =
$$\frac{0.05 \text{ N}}{[25 - 4 \text{ E.P. } (\frac{0.01}{0.05})] \times \text{F} \times 1000}}{10} = \dots g/L$$

If (F) is calculated on the 2nd standard (0.01 N NH₄SCN):

Equivalence factor (F):

$$1 \text{ NH}_4 SCN \equiv 1 \text{ NaCl}$$
standard sample

each ml of 0.01 N NH₄SCN
$$\equiv \frac{1 \times M.W. \text{ of } NaCl \times 0.01}{1 \times 1000} \equiv g NaCl$$

Calculation of concentration:

Concn. =
$$\frac{0.05 \,\text{N}}{[25 \, (\frac{0.05}{0.01}) - 4 \, \text{E.P.}] \, \times \, \text{F} \, \times 1000}}{10} = \dots g/L$$

	de:
	Calculate the concentration of the mentioned chloride sample:
hod	ide
met	hlor
q's	ed c
har	tion
Vol	men
Determination of (CI) by Volhard's method	the
	jo i
of (tion
tion	ntra
inat	nce
rm	o cc
)ete	e th
	ulat
	alci
	9

					1	
♣ Data	1st Problem	2 nd Problem	3 rd Problem	4 th Problem	5 th Problem	6 th Problem
→ Sample:	10 ml NaCl sample (M.W.= 58.5)	10 ml BaCl ₂ sample (M.W.= 208)	10 ml NaCl sample (M.W.= 58.5)	25 ml NaCl sample (M.W.= 58.5)	10 ml AlCl ₃ sample (M.W.= 133.3)	20 ml CaCl ₂ sample (M.W.= 111)
→ 1 st Standard:	50 ml 0.03 N AgNO ₃	25 ml 0.4 N AgNO ₃	25 ml 0.5 N $AgNO_3$	50 ml 0.05 N AgNO ₃	25 ml 0.6 N $AgNO_3$	50 ml 0.04 N AgNO ₃
◆ Volume titrated: { after dilution to 100 ml & then filtration }	25 ml of the filtrate	25 ml of the filtrate	20 ml of the filtrate	10 ml of the filtrate	25 ml of the filtrate	25 ml of the filtrate
2nd Standard(Titrant):	$0.01 \mathrm{N}$ NH ₄ SCN	$0.1~\mathrm{N}$ NH ₄ SCN	$0.1~\mathrm{N}$ NH ₄ SCN	$0.01 \mathrm{N}$ NH ₄ SCN	0.3 N NH ₄ SCN	$0.02 \mathrm{N}$ NH ₄ SCN
► End point:	15 ml	15 ml	15 ml	5 ml	8 ml	12 ml
		An	Answers			
Equivalence factor if calculated on AgNO ₃ :	1.76 \times 10 ⁻³ gm NaCl	0.0416 gm BaCl ₂	0.02925 gm NaCl	2.925×10^{-3} gm NaCl	0.02666 gm AICI ₃	2.22×10^{-3} gm CaCl ₂
Equivalence factor if calculated on NH ₄ SCN	4)	0.0104 gm BaCl ₂	5.85×10^{-3} gm NaCl	5.85×10^{-4} gm NaCl	0.01333 gm AICI ₃	1.11×10^{-3} gm $CaCl_2$
⇒ Concentration :	5.265 gm/L	41.6 gm/L	29.25 gm/L	4.68 gm/L	23.99 gm/L	2.886 gm/L

(0)

Exp.(6): Determination of KBr by Volhard's method

Principle : {Back (Residual) titration}

It depends upon the precipitation of Br^- as AgBr by the addition of a known excess of standard $AgNO_3$ THEN the remaining unreacted $AgNO_3$ is back titrated against standard NH_4SCN using ferric alum indicator.

NH4SCN titrant

remaining unused AgNO₃ + Fe³+ indicator

2 <u>Titration reaction</u>:

$$Ag^+$$
 + $SCN^ \longrightarrow$ $AgSCN \downarrow$ (remaining unused excess) (NH₄SCN titrant) white ppt

3 End point reaction:

$$SCN^{-}$$
 + Fe^{3+} \longrightarrow $[Fe(SCN)]^{2+}$ (1st dr. excess after complete (indicator) faint orange reactn with the unused Ag^{+}) or faint red color

Bromide is determined by Volhard's method in the same way as chloride but without removing the ppted AgBr because it is more insoluble (lower K_{sp}) than AgSCN so SCN^- ion will <u>not</u> attack AgBr ppt after complete reaction with the unused Ag^+ .

Exp.(7): Determination of NaI by Volhard's method

Principle: {Back (Residual) titration}

It depends upon the precipitation of I^- as AgI by the addition of a known excess of standard AgNO₃ THEN the remaining unreacted AgNO₃ is back titrated against standard NH₄SCN using ferric alum indicator.

NH4SCN titrant -

remaining unused AgNO₃ + Fe³+ indicator

$$Ag^+$$
 + $SCN^ \longrightarrow$ $AgSCN \downarrow$ (remaining unused excess) (NH₄SCN titrant) white ppt

3 End point reaction:

$$SCN^{-}$$
 + Fe^{3+} \longrightarrow $[Fe(SCN)]^{2+}$ (1st dr. excess after complete (indicator) faint orange reactn with the unused Ag^{+}) or faint red color

Iodide is determined by Volhard's method in the same way as chloride but differs from chloride in the following:

- 1. No need to remove the ppted AgI because it is more insoluble (lower K_{sp}) than AgSCN so SCN $^-$ ion will <u>not</u> attack AgI ppt after complete reaction with the unused Ag^+ .
- 2. The iodide solution must be <u>diluted</u> suitably to minimize the adsorptive effect on the ppt.
- 3. HNO₃ must be added <u>after</u> adding AgNO₃ (not after adding the sample as in case of chloride) to prevent any oxidation of the iodide (I^-) sample into iodine (I_2).

Question: (Complete the following)

In the determination of NaI by Volhard's method, if HNO_3 is added directly after the sample, the observed E.P. will be <u>higher</u> than the true. {because HNO3 will cause oxidation of I sample = $\sqrt{reacted}$ part = $\sqrt{react$