
4TH SECTION (PART I & II) ******

Methods of increasing selectivity of EDTA

- EDTA is very unselective because it can form stable complexes with many divalent, trivalent and tetravalent cations.
- Many methods can increase the selectivity of EDTA and so facilitate the titration of mixtures or the removal of interferences.
- Examples of these methods are illustrated in the following experiments:

Exp.(14): Complexometric determination of (Ca²⁺/Mg²⁺) mixture (CaCl₂.6H₂O & MgSO₄.7H₂O)

Principle: (direct titration)

1) First step: (Determination of Ca²⁺only).

By titrating 10 ml of the mixture \neq standard EDTA using 8% NaOH & murexide indicator.

$$E.P_1 \equiv Ca^{2+}$$
 only.

2) <u>Second step</u>: (Determination of total Ca²⁺ & Mg²⁺).

By titrating another 10 ml of the mixture ≠ standard EDTA using amm. buffer & EBT indicator.

$$E.P_2 \equiv Total (Ca^{2+} \& Mq^{2+}).$$

Notes:

1) When we use 8% NaOH (pH=12) & murexide, we determine Ca^{2+} ONLY because: Mg²⁺ does not form any complex with EDTA at pH=12 due to the precipitation of Mg^{2+} as $Mg(OH)_2 \downarrow$ which is more stable than (Mg-EDTA) complex. IN OTHER WORDS, we can say that the selectivity of EDTA was increased to determine Ca^{2+} only without interference of Mg^{2+} .

2) \underline{Ca}^{2+} alone can not be directly determined \neq EDTA using EBT ind.
because : EBT gives poor E.P. with Ca^{2+} (<u>i.e.</u> the color change at E.P. is
not sharp) and that is because the binding between Ca^{2+} & EBT is very weak.
3) Although EBT can not be used in direct complexometric
determination of Ca2+ alone (as mentioned before), BUT it can be used
for determination of total Ca ²⁺ & Mg ²⁺ HOW??!!
= ····································
That is because:
\Rightarrow Before starting titration: {sample (Cd^{2+} & Mg^{2+}) + amm. buffer + EBT}
EBT will be complexed with Mg ²⁺ only because (Mg-EBT) complex is
more stable than (Ca-EBT) complex which is very weak (as mentioned before).
<u>i.e.</u> We have { free Ca^{2+} + free Mg^{2+} + (Mg -EBT) } in the flask.
⇒During titration, the following reactions occur:
1) EDTA + free $Ca^{2+} \leftrightarrow (Ca-EDTA)$ complex.
2) EDTA + free $Mg^{2+} \leftrightarrow (Mg-EDTA)$ complex.
$\{E.P.\}$ 3) EDTA + (Mg-EBT) \leftrightarrow (Mg-EDTA) + free EBT.
That of Lotter (Mg Lotte) (Mg Lotte) this sales
i.e. EDTA reacts first with free Ca^{2+} then with free Mg^{2+} because
- 1

Ó

And finally EDTA reacts with (Mg-EBT) complex and so the color change at E.P. will be due to Mg-reaction and that gives sharp E.P. representing (or equivalent to) the total. Procedure : Murexide reading (E.P₁) : $(\equiv Ca^{2+} \text{ only})$ 1) Transfer 10 ml of the mixture into a clean conical flask. 2) Add 2 ml of 8% NaOH. 3) Add few specks of murexide indicator. 4) Titrate \neq 0.05 M EDTA. { Color change at E.P.: from Rose Red (Pink) to Bluish Violet } Complexed murexide ind murexide ind. B EBT reading (E.P₂) : ($\equiv Ca^{2+} + Mg^{2+}$) 1) Transfer another 10 ml of the mixture into a clean conical flask. 2) Add 2 ml of Amm. buffer. 3) Add few specks of EBT indicator. 4) Titrate \neq 0.05 M EDTA. { Color change at E.P.: from Wine Red to Pure Blue } Complexed Free EBT ind. EBT ind.

Calculations :

E.P₁ {murexide reading} = Ca^{2+}

$$E.P_2 \{EBT reading\} \equiv Ca^{2+} + Mg^{2+}$$

$$\therefore (E.P_2 - E.P_1) \equiv Mq^{2+}$$

For Ca²⁺:

$$Ca^{2+} + H_2Y^{2-} \leftrightarrow CaY^{2-} + 2H^+$$

EDTA
(standard)

∴ 1 EDTA =
$$\frac{1}{2}$$
 CaCl₂.6H₂O standard sample

Equivalence factor (F):

each ml of 0.05 M EDTA =
$$\frac{1 \times M.W. \text{ of } CaCl_2.6H_2O \times 0.05}{1000} = ...g CaCl_2.6H_2O$$

Concentration:

Concn. of
$$CaCl_2.6H_2O = \frac{E.P_1 \times F \times 1000}{10} =$$
 g/L

For Mg²⁺:

$$Mg^{2+} + H_2Y^{2-} \leftrightarrow MgY^{2-} + 2H^+$$

EDTA
(standard)

∴ 1 EDTA =
$$\underline{1}$$
 MgSO₄.7H₂O standard sample

Equivalence factor (F):

each ml of 0.05 M EDTA =
$$\frac{1 \times M.W. \text{ of MgSO}_4.7H_2O \times 0.05}{1000}$$
 =...g MgSO_{4.7}H₂O

Concentration:

Concn. of MgSO₄.7H₂O =
$$\frac{(E.P_2 - E.P_1) \times F \times 1000}{10}$$
 = g/L

Use of masking and demasking agents to increase the selectivity of EDTA

Introduction

 The selectivity of EDTA can be increased by the use of masking and demasking agents.

• Definition of Masking:

It's the process in which a substance is transformed into a form that does not enter into the reaction <u>without making physical separation</u> of the substance or its reaction products.

					٠	٠	٠		 	٠	٠	٠	•		 	٠		٠		٠		•	 	٠	٠		٠		 			•	٠		_	Ø	3	
									 						 				 							 								 ٠				
				٠	٠				 	•		٠	•	٠	 	•	٠	٠	 	•	٠			٠	•		٠			٠	٠			 ٠	٠			

Examples: (CN⁻) ion is an effective masking agent that can form stable cyanide complex with some cations as $\underline{Cu^{2+}}$, $\underline{Cd^{2+}}$, $\underline{Hg^{2+}}$ & $\underline{Zn^{2+}}$ making them unable to react with EDTA or with indicators \underline{SO} other cations as $\underline{Mg^{2+}}$, $\underline{Mn^{2+}}$ & $\underline{Ca^{2+}}$ can be determined without interference of the above mentioned metals.

[Refer to the determination of (Cu^{2+}/Mg^{2+}) mix & (Hg^{2+}/Mg^{2+}) mix.].

• Definition of demasking:

It's the process in which the masked substance regains its ability to enter into the reacton.

Examples:

$$[Zn(CN)_4]^{2-}$$
 demasking by (formaldehy de / acetic acid) $\rightarrow Zn^{2+}$

• The use of masking agents can be illustrated in the following experiments.

Exp.(15): Complexometric determination of (Mg²⁺/Cu²⁺) mixture (MgSO₄.7H₂O & CuSO₄.5H₂O)

Principle: (direct titration)

a) <u>Determination of Ma²⁺only</u> (2 steps):

1st step: Masking of Cu2+ by KCN as follows:

•
$$Cu^{2+}$$
 + 4 NH_3 \leftrightarrow $[Cu(NH_3)_4]^{2+}$ amm. buffer Copper ammine complex (Blue color)

•
$$[Cu(NH_3)_4]^{2+} + 4CN^ Cu(CN)_4]^{2-} + 4NH_3$$

wery stable complex

Not react with EDTA

<u>2nd step:</u> Titration of $Mg^{2+} \neq standard$ EDTA using EBT indicator without any interference of Cu^{2+} .

N.B. Role of Amm. buffer in this experiment:

a) Consume the released protons from the reaction between metal and EDTA and so make the reaction go forward.

Metal + EDTA
$$=$$
 (metal-EDTA) complex + $2H$

b) Keep pH constant and so keep the correct color of the indicator.

NEW c) Give blue color with Cu²⁺ and so complete masking of Cu²⁺ will be indicated by the disappearance of this blue color. {that is the cause of adding amm. buffer before KCN}.

b) <u>Determination of Cu²⁺only</u>:

by titrating another 10 ml of the mixture \neq standard EDTA using **PAN indicator & Acetate buffer** without interference of Mg^{2+} . {PAN = Pyridylazonaphthol}

Color change: from Pink (complexed PAN) to Yellowish Green (free PAN).

N.B. PAN indicator allows selective titration of Cu^{2+} in presence of Ba^{2+} , Ca^{2+} , Mg^{2+} & Mn^{2+} .

Procedure

A For Mg^{2+} only (E.P₁):

- 1) Transfer 10 ml of the mixture into a clean conical flask.
- 2) Add 2 ml of amm. buffer. \rightarrow gives blue color.
- 3) Add few drops of 10% KCN by a dropper till the blue color disappears. \rightarrow that means complete masking of Cu^{2+} .

Warning: KCN is Very Very Toxic

- 4) Add few specks of EBT indicator.
- 5) Titrate \neq 0.05 M EDTA.

{ Color change at E.P.: from Wine Red to Pure Blue }

B For Cu^{2+} only (E.P₂):

- 1) Transfer another 10 ml of the mixture into a clean conical flask.
- 2) Add 2 ml of acetate buffer.
- 3) Add 5 drops of PAN indicator.
- 4) Titrate \neq 0.05 M EDTA.

{ Color change at E.P.: from Pink to Yellowish Green }

Calculations

$$E.P_1 \equiv Mg^{2+}$$

$$E.P_2 \equiv Cu^{2+}$$

$$Mg^{2+} + H_2Y^{2-} \leftrightarrow MgY^{2-} + 2H^+$$

$$\therefore 1 EDTA = \underline{1} MgSO_4.7H_2O$$
standard sample

Equivalence factor (F):

each ml of 0.05 M EDTA =
$$\frac{1 \times M.W. \text{ of MgSO}_4.7H_2O \times 0.05}{1000} = ...g \text{ MgSO}_4.7H_2O$$

Concentration:

Concn. of MgSO₄.7H₂O =
$$\frac{E.P_1 \times F \times 1000}{10}$$
 = g/L

$$Cu^{2+} + H_2Y^{2-} \leftrightarrow CuY^{2-} + 2H^+$$

$$\therefore 1 EDTA = \underbrace{1}_{sample} CuSO_4.5H_2O$$

Equivalence factor (F):

each ml of 0.05 M EDTA =
$$\frac{1 \times M.W. \text{ of } CuSO_4.5H_2O \times 0.05}{1000} = ...g CuSO_4.5H_2O$$

Concentration:

Concn. of
$$CuSO_4.5H_2O = \frac{E.P_2 \times F \times 1000}{10} =g/L$$

Exp.(16): Complexometric determination of (Mg²⁺/Hg²⁺) mixture (MgSO₄.7H₂O & HgCl₂)

Principle: (direct titration)

a) Determination of Ma²⁺only (2 steps):

 1^{st} step: Masking of Hg²⁺ by KCN:

$$Hg^{2+} + 4 CN^{-} \longrightarrow Hg(CN)_4]^{2-}$$
masking agent very stable complex

Not react with EDTA

<u>2nd step:</u> <u>Titration of Mg²⁺ \neq standard EDTA using EBT indicator</u> & amm. buffer without any interference of Hg²⁺.

b) <u>Determination of Total (Mg²⁺ & Hg²⁺)</u>:

by titrating another 10 ml of the mixture \neq standard EDTA using EBT indicator & amm. buffer.

Procedure:

A For Mg²⁺ only (E.P₁):

- 1) Transfer 10 ml of the mixture into a clean conical flask.
- 2) Add 10 drops of 10% KCN by a dropper.

- 3) Add 2 ml of amm. buffer.
- 4) Add few specks of EBT indicator.
- 5) Titrate \neq 0.05 M EDTA.

{ Color change at E.P.: from Wine Red to Pure Blue }

B For Total (Mg²⁺ & Hg²⁺) (E.P₂):

- 1) Transfer another 10 ml of the mixture into a clean conical flask.
- 2) Add 2 ml of amm. buffer.

- 3) Add few specks of EBT indicator.
- 4) Titrate \neq 0.05 M EDTA.

{ Color change at E.P.: from Wine Red to Pure Blue }

Calculations

For Mg²⁺:

$$Mg^{2+} + H_2Y^{2-} \leftrightarrow MgY^{2-} + 2H^+$$

EDTA
(standard)

$$\therefore 1 EDTA = \underline{1} MgSO_4.7H_2O$$
standard sample

Equivalence factor (F):

each ml of 0.05 M EDTA =
$$\frac{1 \times M.W. \text{ of MgSO}_4.7H_2O \times 0.05}{1000} = ...g \text{ MgSO}_4.7H_2O$$

Concentration:

Concn. of MgSO₄.7H₂O =
$$\frac{\text{E.P}_1 \times \text{F} \times 1000}{10}$$
 = g/L

For Hg²⁺:

$$Hg^{2+} + H_2Y^{2-} \leftrightarrow HgY^{2-} + 2H^+$$

EDTA
(standard)

$$\therefore 1 EDTA = 1 HgCl_2$$
standard sample

Equivalence factor (F):

each ml of 0.05 M EDTA =
$$\frac{1 \times M.W. \text{ of HgCl}_2 \times 0.05}{1000} = ...g \text{ HgCl}_2$$

Concentration:

Concn. of
$$HgCl_2 = \frac{(E.P_2 - E.P_1) \times F \times 1000}{10} = \dots g/L$$

Summary

(The use of masking and demasking in the determination of mixtures)

How to use masking in the determination of a mixture of X & Y?

 \Downarrow

1 $\underline{\mathbf{1}}^{\underline{st}}$: 10 ml sample \rightarrow masking of $X \rightarrow$ and then detn. of $Y = (E.P_y)$.

 $\underline{2}^{nd}$: another 10 ml sample \rightarrow detn. of total $X & Y \dots (E.P_{total})$.

 $\therefore E.P_x = E.P_{total} - E.P_y$

 $\{ \underline{ex} : Hg^{2+}/Mg^{2+} \text{ mixture} \}$

OR

2 $\underline{\mathbf{1}}^{\underline{st}}$: 10 ml sample \rightarrow masking of $X \rightarrow$ and then detn. of $Y = (E.P_y)$.

 $\underline{\mathbf{2}}^{\text{nd}}$: another 10 ml sample \rightarrow detn. of X only by using a selective indicator for X in presence of Y (E.P_x).

 $\{ \underline{ex} : Cu^{2+}/Mg^{2+} \text{ mixture} \}$

OR

3 10 ml sample o masking of X o and then detn. of Y *(E.P_y)*

And then on the same solution, make demasking of X and titrate it on the same solution (E.P_X).

 $\{\underline{ex}: Refer to determination of (Mg^{2+}, Zn^{2+} & Cu^{2+}) mixture منهج النظري <math>\}$

THE END

**** Best wishes ****